
  

0 

 
 

Research Clusters and Technology Diffusion:  
Does Distance Matter? 

 
 
 
 

Paul Deng 
Department of Economics 

Brandeis University 
dengduo@brandeis.edu 

 
 
 
 

This draft: August 10, 2009 
 

 For review and comments only 
 
 
 
 
 

Abstract 
 
Much of the debate over income convergence hinges on whether technology diffusion is 
“global” or “local”.  In this paper, I address this question in a developing country setting 
and focus on the role of major research clusters in promoting domestic technology 
diffusion.  I identify four de facto research centers in China and investigate whether the 
effect of R&D spillovers from these research clusters is related to both geographic and 
technological distances.  I find that firms’ productivity gains from R&D spillovers from 
the research cluster decline with (i) increasing physical distance away from the research 
cluster, and (ii) the technological gap between technology senders and recipients.   
 

 

 
 
JEL classifications: O3, O4, O18 
Keywords: Technology diffusion, Spillover, R&D, Productivity, Economic Geography, China 



 1

 

1.   Introduction 

Ever since Robert Solow presented his seminal finding regarding the central importance 

of technology in driving long-term economic growth, technology and its diffusion 

mechanism have occupied the center stage of economic development.  One of the key 

issues remaining unresolved is whether technology and knowledge spillovers are global 

or local.1  If technology spillover is global, poor countries (regions) are more likely to 

catch up with rich countries (regions).  However, if technology spillover is local, the 

outlook for world development is much less optimistic.  Rather than income convergence, 

we are more likely to observe a diverging growth pattern between poor and rich countries 

(or regions).   

 The question is not a settled one in economics in part because economic theory 

offers no clear predictions as to the scope of technology spillover.  On one hand, there is 

every reason to believe technology diffusion is global, either through international trade 

(Feenstra, 1996; Keller, 2002b) and foreign investment, or through freer labor migration, 

better transportation and telecommunications, especially in the age of the Internet (see, 

for example, Glaeser and Kohlhase, 2004).  Thomas Friedman, in his popular book 

(2006), “The World Is Flat”, famously documented how the Internet and other modern 

logistic advances have fundamentally changed the world trade and the way multinational 

firms operate.  It is plausible that with transportation and communications costs reduced 

to a much lower level than before, distance does not matter any more for technology 

diffusion.  On the other hand, factors such as superior infrastructure, better opportunities 

                                                 
1 “Global” means technology diffusion is not limited by distance; in contrast, “local” means technology 
spillovers are constrained by the distance from the source.  
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for exchanging ideas, and better institutions all attract highly skilled labor force to work 

and live in certain area;2 these factors tend to produce large disparities in both technology 

and income across different regions and countries (see for example, Jacobs, 1970; 

Glaeser, 2007).  As for developing countries, poor infrastructure, ill-designed government 

policies and weak institutions could also slow down or block the technology diffusion 

process (Easterly 2002).  Adding to the severity of the problem is the high correlation 

between quality of infrastructure/institutions and country’s level of development.  The 

existence of these impediments in the technology diffusion process increases the 

possibility that income divergence may happen even when technology and knowledge are 

readily available to the general public.  In short, arguments on both sides seem to be 

sensible.  With little comfort from established theories, the answer to the question 

ultimately goes to empirical test with data in the real world.  

 When it comes to empirical research on the scope of technology diffusion, most 

research focuses on spillovers across rich countries (e.g. Keller, 2002; Eaton and Kortum, 

1999; Coe and Helpman, 1995), or on spillovers within a developed country (e.g. Adams 

and Jaffe, 1996).  And they generally confirm that distance does matter.  However, there 

is a serious lack of research in both technology spillovers between rich and poor countries, 

and spillover within a developing country setting.  Given the importance of technology-

knowledge transfer to the welfare of the poorer countries and how little we know about 

the diffusion mechanism at the micro-level, the absence of relevant research should long 

have been rectified.   In this paper, I intend to address the dearth of research in this area 

by investigating empirically how the productivity at the firm level is affected by the 

technology spillovers from the key R&D research clusters within China.  Specifically, I 
                                                 
2 Sometimes even better restaurants can have a large impact on people’s choice for work locations.   
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am interested in finding out whether the productivity gains from technology spillovers 

decline with increasing distance, both in geographic and technological sense, between 

technology senders (research clusters) and recipients (firms).  The research clusters in our 

research are defined as a bundle of firms performing R&D located within a major city.  I 

focus on research clusters because it is widely believed that technology centers, like 

Silicon Valley in the U.S., have generated large positive externalities from their 

technological innovations, and firms closer to the cluster have enjoyed relatively high 

productivity gains.    

 I ask two related questions in this empirical analysis.  The first question is 

whether technology spillovers from R&D research clusters are affected by the physical 

distance between research clusters and firms.  Unlike other research that focuses on 

patent citations in their research on technology spillovers (see Jaffe et al. 1993; Griffith et 

al. 2007), I use measures of firm-level labor productivity to assess the impact of 

technology spillovers from the research cluster.  For technology diffusion to be local, I 

expect to observe a negative relationship between the effect of technology spillovers and 

increasing distance. However, if technology diffusions are global, I expect to find no such 

pattern.   

 The second question I ask is whether technology diffusion not only depends on 

physical distance, but also depends on technological distance.  Firms’ relative position on 

the technology ladder affects the effectiveness of their technology adoption.  The smaller 

the technology distance between technology senders and recipients, the more effective 

the new technology will be utilized by receiving firms.  Easterly (2002) argues that 

technology adoption is also affected by the institutions that shape the incentives of 
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individuals and firms.  Institutions that are designed poorly or operate inefficiently will 

create fewer incentives for firms to absorb the existing technology, causing firms to lag 

further behind.  Our definition of technological distance captures both the technology 

level and the institutional environment in which firms operate.   

 Here is a preview of my research findings.  First, I find that geographic distance 

does matter: with increasing physical distance between research clusters and firms, the 

effect of R&D spillovers from research clusters declines.  Distance also matters in a 

technological sense.  I find that the impact of R&D spillover decreases with increasing 

gap between the average productivity at research clusters and the average productivity of 

firms that are located in the same city.  The rest of the paper is organized as follows.  In 

Section 2, I describe the research data, how I identify China’s research clusters and the 

main characteristics of these research centers.  In Section 3, I introduce the empirical 

models and estimation strategies.  This is followed by the analysis of the main regression 

results in Section 4.   Then final section concludes.  

 

2.   Data 

 For this empirical research, I use the firm-level data out of China’s Large and 

Medium-Size Enterprises (LME) database provided by National Bureau of Statistical 

(NBS) of China.  The LME database includes over 20,000 firms per year, on average, and 

spans the years from 1995 to 2004.  The database is one of the most comprehensive 

micro-level databases in China.  In 2002, the total output of the sample firms in the 

database accounted for more than 60% of China’s total industrial output. 
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2.1   Where are China’s research clusters? 

 To spur regional economic growth and promote technology transfer, since the 

early 1990s, governments in China, both at the central and local levels, have established 

dozens of so-called “Technology Parks” in numerous cities.  With concentrations of 

technology-intensive firms, some of these parks exhibit features very similar to Silicon 

Valley in the U.S.  But the true nature of the majority of those parks is not clear.  Do 

firms inside these parks truly engage in R&D activities? Or were these firms just set up to 

take advantage of the preferential tax treatments and subsidies offered by governments?  

Hu (2007) investigates 53 of such technology parks in his empirical research and he finds 

no evidence that firms benefit from concentrating in these technology parks.  One 

potential explanation for this finding is some of these technology parks do not engage in 

R&D activities at all.  Given insufficient information with regard to R&D firms inside 

these parks, in this paper, I take a different approach in defining what a research 

(technology) cluster is.   

 

[Insert Figure 1 and Figure 2 here] 

 

 I identify the de facto research clusters by ranking the total R&D expenditure in 

each major Chinese city during 1995-2004 period.  The city-level R&D spending comes 

from the aggregation of all the firms in LME located within the city.  In Figure 1, I graph 

the top ten cities in China with the largest total LME R&D spending.  Four cities stand 

out among China’s cities: Shanghai, Shenzhen, Qingdao and Beijing.  From 1995 to 2004, 

firms in these four cities had spent a total of 67 billion Yuan on R&D, which equals 25% 



 6

of total R&D spent by all Chinese firms during the same time period.  Among these four 

cities, Shanghai leads the pack, accounting for nearly 9% of the total LME R&D 

spending , and it is followed by Shenzhen, with share of about 8.5% of the national total, 

and by Qingdao and Beijing, each spending nearly 4% of the total (see Figure 2).  These 

four cities are the research clusters that I initially select for this empirical study.  As 

additional proof that my pick is an appropriate one, Richard Florida, in writing on the rise 

of mega region,3 cited three cities out of the four cities that I identify, namely, Shanghai, 

Beijing and Shenzhen.  In addition, in Hu’s documentation (2007), these four cities also 

appear on the list with the largest technology parks.  The geographic location of the 

research clusters inside China is shown in Appendix A.  And given China’s large regional 

gap in economic development, it came as no surprise that all four cities are located along 

China’s coastal line.   

 
 
2.2   Source of R&D spillovers within the research cluster 

 After I have identified the de facto research clusters, I next decide whether to 

count all the firms in the center with R&D expenditure as the source of technology 

spillovers, or simply the top firms with the largest R&D spending.  This is essentially a 

question about the R&D spillover dynamic.  Is the source of spillovers limited to large 

firms that are intensively engaged in R&D, or does each Yuan of R&D spending, 

regardless of firm size make comparable contributions to R&D spillovers?   

 
[Insert Figure 3 here] 

 

                                                 
3 See Richard Florida (2008). 
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 In Figure 3, I graph the R&D concentration ratios of the top 1, 3, 5, 10 and 20 

firms in the four research clusters.  The ratios are calculated using their average R&D 

spending from 2000 to 2004.  As shown in the graph, R&D spending within each city is 

highly concentrated.  If we look at the concentration ratios of the top 5 firms, Shenzhen 

and Qingdao appear to have the highest concentration ratios among the four, both 

exceeding 75%.  In contrast, R&D in Shanghai is much less concentrated, with the 5-firm 

concentration ratio only slightly below 25%.  This reflects the fact that Shanghai 

historically had a much larger industrial base than the other three, and R&D activities 

within the city are more dispersed. 4   If we move to look at the concentration ratios of the 

top twenty firms, we get a similar picture only with even higher concentration. The top 

twenty firms almost monopolized the whole R&D activities: in both Shenzhen and 

Qingdao, the top 20 firms accounts for 88% of total R&D spending; in Beijing, the 

number is 71%; Shanghai is again shown to have a more dispersed distribution of R&D, 

its 20-firm concentration ratio nonetheless still reaching 45%. Finally, if we just look at 

the top 1-firm concentration ratio, we observe the most stunning fact that in both 

Shenzhen and Qingdao, a single firm accounts for more than 40% of total R&D spending 

of the whole city.5 

  

2.3   Which industries in China engage in most R&D activities? 

 Our dataset includes 31 2-digit industries by SIC classification in China’s 

manufacturing space.  In this section, I identify which industries have engaged in the 

                                                 
4 Shanghai distinguishes itself from other centers by having a much more diverse R&D base and high 
concentration in education.  It is reasonable to believe these two qualities place Shanghai in a more 
advantageous position in becoming the most important research center in China.  
5 For Shenzhen, this single firm is Huawei Technologies in the electronics and telecom industry; for 
Qingdao, this single firm is Haier in electric machinery industry.  
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most R&D activitie, by looking at the industry-level R&D expenditure in each research 

cluster.   

 
[Insert Figure 4 here] 

 

 As shown in Figure 4, each research cluster has established its relative strength in 

R&D.  In Beijing and Shenzhen, the telecom and electronics industry occupies a 

disproportionately large share of the total R&D activities.  In Beijing, the telecom and 

electronics industry accounts for 62% of the total R&D spending on average from 2000 

to 2004; in Shenzhen, the same industry accounts for an overwhelmingly 96%!  In 

Shanghai and Qingdao, most R&D is concentrated in transportation equipment and 

electric machinery industry, respectively.  However, the telecom and electronics industry 

still accounts for a very large share in these two cities.   

 The nature of these R&D activities in China’s telecom and electronics industry 

remains uncertain.  Nonetheless, as above analysis shows, China’s telecom and 

electronics industry has been investing heavily in R&D, and this industry may well 

emerge as one of the serious competitors in the world market in coming decades. 

  
 

[Insert Figure 5 here] 

 

 Figure 4 focuses on industry R&D concentration in the four research clusters.  To 

show a broader picture of which industries China’s R&D activities are concentrated, in 

Figure 5, I graph the R&D spending by industries on a national level, including those 

four research clusters.  As shown in the graph, the telecom and electronics industry 
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accounts for about a quarter of the total R&D expenditure, still the largest share among 

all industries.  And it is followed by transportation equipment (mainly automobile) 

industry, at 14%; electric machinery, at 10%; ferrous metal at 8% and chemicals at 7%.   

 Finally, in Figure 6, I show another graph of R&D by industry for firms with over 

100 million Yuan R&D expenditure in 2004.  Again, the telecom and electronics industry 

dominates all industries with the largest share of above 62% of the total R&D spending, 

and it is followed by transportation equipment at 15%, ferrous metal at 11% and electric 

machinery at 9%.    By comparing Figure 5 and Figure 6, I arrive at the conclusion that 

for the largest firms, the industry concentration ratio is even higher.   

 

[Insert Figure 6 here] 

 
 
 

3.   Estimation Strategies 

 In this section, I discuss the empirical modeling strategies.  I first estimate how 

physical distance affects technology spillovers, and then I add in technological distance 

into the equation and see how both distances affects technology spillovers.   

 
3.1 Geographic distance 

 To estimate how geographic or physical distance affects the magnitude of 

technology spillovers, I use the following estimation equation: 

 

             ,( )5,ln ln( / ) ln( )
c
n i ndisttop c

ijt ijt jt i j t ijtLP K L CRD e u                     (1) 

 



 10

The dependent variable, ln ijtLP , or log of labor productivity, is measured by the value-

added per employee-year at the firm level, ln( / )ijtVA L , and it is used to capture the 

impact of technology spillovers over firms.  It is indexed for firm i, SIC 2-digit industry j, 

and year t.  Equation (1) controls for variations in labor productivity that are associated 

with differences in capital-labor ratios, ln( / )ijtK L . I also included firm-level fixed effects 

iu , industry dummies j , and time effects t .  

 To estimate how geographic distance affects the effectiveness of technology 

spillovers on firm’s productivity from R&D activities at the research cluster, I created an 

interactive term between the log of cumulative R&D spending, or ln( )c
jtCRD , and the 

geographic distance between the research cluster c, and the nearest city n, where the firm 

i is located, or simply ,( )
c
n i ndist  . 6   The interaction term is the main variable in our 

estimation. If technology diffusion is local, I expect the coefficient of the interactive 

term,  , to be positive and significant.  Following the approach in Keller (2002), I 

transform the geographic distance through an exponential function7 to avoid the dropout 

of those firms whose physical distances are zero. 8   By such transformation, I also 

generate a smooth declining curve, which allows the gains of technology spillovers to 

remain always positive, and only decline gradually with increasing distance between 

research cluster and the firm.  Figure 7 shows the scatter plot on the actual physical 

distance data expressed in exponential function.   

 

                                                 
6 The superscript, c, stands for the nearest cluster.  
7 The exponential transformation: exp( )diste dist    
8 The distance between firm and research cluster could be zero when the firm is in the same city as the 
research cluster. 
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[Insert Figure 7 here] 

 

 Here are some more details regarding how I calculate the physical distance.  I 

identify each firm’s location in LME dataset by its administrative code.  The 

administration code points out the nearest city, n, in which the firm, i, is located.  I then 

use the geographic distance between the city n where the firm i is located and its nearest 

research cluster, c, as a proxy for the distance between the research cluster and the firm.  

To calculate this distance, I first obtain a matrix of the latitude and longitude of China’s 

cities using the Geographic Information System (GIS).  Then, I compute the distance 

using the Great Circle Formula.9  Finally, I map the distance numbers back into the main 

LME dataset by matching the city codes between GIS and LME datasets.  In total, I 

included 258 distinct city locations, i.e. n=258, and physical distances in the empirical 

test.  These 258 cities included almost all medium and above level cities in China.  Each 

of these 258 distances is the minimum of the four geographic distances from the city, n, 

to the four research clusters, i.e.,   

 ,( ) ,( ) ,( ) ,( ) ,( )( , , , )c Shanghai Beijing Shenzhen Qingdao
n i n n i n n i n n i n n i ndist MIN dist dist dist dist     .  

 I use cumulative R&D instead of R&D spending in each year t, as the impact of 

past R&D on productivity tends to have a time lag so the benefit of R&D investment 

won’t show up until years later.10   Cumulative R&D at the research cluster is index by 

cluster c, industry j and year t.  In other words, I allow the cumulative R&D at each 

research cluster to vary across industries and years.  But why include all industries, why 

not just focus on those industries with the highest R&D spending?  As previously 

                                                 
9 Great Circle Formula: distance= 6378km*arccos[sin(lat1)*sin(lat2) + cos(lat1)*cos(lat2)*cos(lon2 - 
lon1)]. (Lat1, Lon1) and (Lat2, Lon2) are latitudes and longitudes of the two locations, respectively.  
10 This lagging effect is well documented by Griliches (1995).  
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discussed in Section 2.2, R&D spending in each center city is highly concentrated among 

the top firms in a few industries.  However, the previous discussion was based on a 

relative level.  Although a handful of largest firms in a few industries dominate R&D 

spending, other industries may still have significant amounts of R&D on an absolute 

level.  Another important reason is from the technical perspective of the estimation: for 

the main variable, the interactive term, it would be highly desirable to generate variations 

from both R&D spending at the cluster level and the geographic distances.  The 

estimation results of equation (1) are presented in Table 2, and I will come to the analysis 

of the results in Section 4.  

 To calculate cumulative R&D spending at the research cluster, I aggregate the 

R&D expenditure of the top5 firms in industry j, year t and at each research cluster c.  As 

discussed in Section 2.2, even without differentiating industries, the top twenty firms at 

each research cluster accounts for the overwhelming majority of the total R&D 

expenditure, so it’s reasonable to use the R&D expenditure of the top 5 firms as a proxy 

to capture the majority of the R&D capability of each industry at the research cluster 

 

3.2 Estimation with technological distance 

 One important question in technology diffusion is whether firms on the lower end 

of technology ladder can effectively absorb knowledge and technology spillovers.  I test a 

variation of this idea by including a measure of technological distance into equation (1) 

and estimate the following equation: 

  

       
5,

5, 5,

ln ln( / ) ln( )

ln( ) _

c
ndisttop c

ijt ijt jt

top c top c
jt njt i j t ijt

LP K L CRD e

CRD tech dist u

 

   

    

     
                  (2). 
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with all other variables remaining unchanged.  By including both distances into the 

equation, I essentially test how the productivity gains from technology spillover will 

change with increasing distance from the center, conditional upon the technological 

distance between the firms and the research cluster.  As both physical and technological 

distances could affect firms’ productivity gains from technology spillovers, it’s important 

to differentiate the two.   Our priori expectation for the sign of the new interactive term is 

negative, as larger technological gap tends to disincentivize firms to adopt new 

technology.  I report the regression results for equation (2) in Table 3.  

 To measure technological distance in equation (2), I use the following formula, 

 
5

,

5, 1 1
,( ) 5

,

1 1

_ log log

N
topk c n
jt ijt

top c k i
njt i n N

topk c n
kjt mjt

k i

VA VA
tech dist

L L

 


 

   
   
    
   
   
   

 

 
                                       (3) 

In equation (3), the first term is log of average labor productivity of the top 5 firms in 

research cluster c, and it is indexed by in industry j, and year t.  The second term is the 

log of the average labor productivity of all firms located in city n, indexed by industry j 

and year t.  There are a total number of N firms in city n, and it varies by each city.  An 

alternative measurement for technological distance is the productivity gap between the 

research cluster and the individual firm i.  I prefer the measurement defined in equation 

(3) for the following two reasons.  First, by setup, the technological gap indexed at firm i 

is nearly perfectly correlated with the dependent variable, log of labor productivity.  

Second, from a theoretical perspective, our choice of measurement captures the different 

business environment in different cities, in which firms operate as well as the different 
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technology level of each industry j.  Different cities have quite different idiosyncratic (or 

local) characteristics: infrastructure, openness, human capital, economic policies, and 

others.  It is true that the firm-level fixed effects estimator in equation (2) helps control 

some of these idiosyncrasies, but none of them is at the city level.  Arguably, our choice 

of technological measurement could also be a good proxy for the quality of local 

institutions. Local institutions here are defined in broader sense and it includes 

infrastructure, pool of skilled workers, living conditions, legal and government 

transparency, etc.  If this is the case, our estimation can be used as a direct test of 

Easterly’s idea (2002) that incentives to adopt new technology are shaped by local 

institutions.  In geographic areas where there exists a big technological gap with the 

technology frontier, referenced by Easterly as a “trap”, technology is much less likely to 

be adopted; and even when the technology is readily available, the reach of technology 

spillovers could be very limited.  The estimation results for equation (2) are presented in 

Table 3. 

 

3.3   Model Extensions 

 In this section, I extend the models in section 3.1 and 3.2, and test several 

alternative specifications of the baseline models.  In section 3.3.1, I change the source of 

R&D spillover from the top 5 firms by industry-year to all firms by industry-year in the 

center city.   In section 3.3.2, I replace the R&D measure from R&D level to R&D 

intensity, where intensity is defined as total R&D divided by total value-added.  In 

section 3.3.3, I differentiate the source of R&D spillover into two parts: domestic versus 

foreign.   
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3.3.1   Top 5 firms vs. all firms 

 Although section 2.2 shows with strong evidence that the R&D of the center cities 

is concentrated mostly by the very few firms at the top, there is some interest to see 

whether total R&D expenditure of whole center city would have the same spillover effect 

on firm productivity as the R&D of the top 5 firms in the research cluster.  In equation (4), 

I test this alternative specification to equation (2) and the regression results are presented 

in Table 4.  

 

ln ln( / ) ln( )

ln( ) _

c
ndistc

ijt ijt jt

c c
jt njt i j t ijt

LP K L CRD e

CRD tech dist u

 

   

    

     
                (4) 

 

3.3.2   Does R&D concentration matter? 

 In this section, I extend the basic model in equation (2) by testing whether the 

R&D concentration ratio in the research cluster matters to technology spillover.  

Specifically, I test the following model in equation (5): 

 
5, 5,

5, 5, 5, 5,

ln ln( / ) ln( ) ln( )

ln( ) _ ln( ) _

c c
n ndist disttop c top c c

ijt ijt jt jt jt

top c top c top c top c c
jt njt jt njt jt

i j t

LP K L CRD e CRD e CR

CRD tech dist CRD tech dist CR

u

  



 

       

    

    ijt

         (5) 

 
 The R&D concentration ratio, c

jtCR , is defined as the ratio of R&D of the top five 

firms to the total R&D expenditure in city c, both indexed by industry j and year t.   By 

including the 5-firm R&D concentration ratio, I am interested in knowing whether a more 

dispersed or concentrated R&D inside the center city can produce productivity gains from 
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technology spillover.  The regression results of this alternative specification are reported 

in Table 5.    

 
3.3.3 Source of R&D spillover: Domestic vs. foreign 

 Given that China is the third largest FDI recipient in the world, only after the US 

and UK, and foreign investment has always played a big role in China’s technology 

diffusion and economic growth, in equation (6), I differentiate the source of R&D at the 

center city into two parts: domestic vs. foreign, and test how different sources of R&D 

spillover affect firm productivity.  

 
,

, , ,

,

ln ln( / ) ln( )

ln( ) _ ln( )

ln( ) _

c
n

c
n

distdomestic c
ijt ijt jt

distdomestic c domestic c foreign c
jt njt jt

foreign c foreign
jt njt

LP K L CRD e

CRD tech dist CRD e

CRD tech dist





 









   

   

  ,c
i j t ijtu      

          (6) 

  
 In equation (6), ,domestic c

jtCRD  is the cumulative R&D expenditure of all the 

domestic firms in the center city c, by industry j and year t.  Similarly, ,foreign c
jtCRD  is the 

cumulative R&D spending of all the foreign firms in the center city c, by industry-year jt. 

Foreign firms includes both foreign wholly-owned firms and the join ventures between 

foreign and domestic partners.  I expect our hypothesis still holds after the differentiation 

of R&D source, but it would be interesting to see how the coefficients of different 

spillover sources compare.  Arguably, foreign R&D source may have a smaller spillover 

effect on firm’s productivity as foreign invested companies always have incentives to 

delay the diffusion process and tend to protect their in-house technology more vigorously.  

However, if we were to assume foreign technology is better and more productive than 
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domestic technology, a smaller “leak” may still produce larger spillover effect on firm’s 

productivity.  The regression results of equation (6) are reported in Table 6.  

 

4.   Empirical Results 

 In this section, I present and analyze the regression results as modeled in equation 

(1) and (2).  I also discuss the potential endogeneity problem in our estimation and how 

to deal with it.  

 The summary statistics of the variables used in regression are reported in Table 1. 

The average labor productivity of all firms located outside the research cluster is 61,000 

Yuan (in current prices) per employee-year.  In contrast, the labor productivity of the top 

5 firms (by industry j) in the research cluster is averaged at 116,000 Yuan per employee-

year, which almost doubles the average productivity of the firms outside of the center.  

The average geographic distance between firms and research cluster is 383 kilometers, 

and it ranges from zero, for those firms that located within the center, to the maximum 

distance of 3,400 km.  

 

4. 1   Analysis of the results 

 Table 2 summarizes the regression results for equation (1), where I look at how 

physical distance between firms and research cluster affects firms’ productivity gains.  I 

first run the simple OLS regression and the results are reported in Column (1).  In 

Column (2) to (4), I move the test to a more robust level by sequentially adding in firm-

level fixed effects, industry dummies and yearly time effects.  The main control variable, 

capital intensity, is shown to be statistically significant throughout and its effect on firm’s 
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productivity is positive.  The coefficient on the interactive term between the research 

cluster’s cumulative R&D spending and the geographic distance is positive and 

statistically significant through Column (1) to Column (3), matching our priori 

expectations, i.e., when the distance between firms and the research cluster increases, 

firms’ productivity gains decline.  However, in Column (4), after addition of the year 

dummies, the coefficient on the interactive term becomes statistically insignificant.   

 
 

[Insert Table 2 here] 

 
 Although only in the strictest test scenario did the coefficient on the interactive 

become insignificant, the result is still less satisfactory.  One explanation could be that 

technology spillover can only affect firm’s productivity within certain distance range.  In 

Table 2b, I test this possibility by estimating equation (1) under different distance ranges.  

And I test the equation by including all kinds of strictest controls, i.e., firm-level fixed 

effects, industry dummies and yearly time effects.  The results show the coefficient on the 

R&D-distance interactive term is statistically significant and positive only when the 

distance falls under 300 kilometers.   The hypothesis still stands but with a twist.  It 

nonetheless strongly confirms our hypothesis that distance matters in technology 

diffusion.  Interestingly, for the test of observations under 100 km range, the coefficient 

turns negative but insignificant.  There is no reason to believe that the effect of 

technology spillovers within 100 km will increase with firm’s distance while it will 

decrease with the distance in 100-300 km range.  A plausible explanation for such results 

is that the firm’s distance in this research is calculated by the distance between the 

nearest city the firm is located and the research cluster.  For firms that fall under 100km 
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range, the nearest city is probably the center city itself.  Therefore, for a large majority of 

these firms, the distances to the center are actually zero in our calculation.  Since there 

are not many variations from distances in the regression, it came as no surprise that the 

coefficient for this sub-group is not statistically significant.   

 

[Insert Table 2b here] 

 

 In Table 3, I report the estimation results for equation (2), where I control the 

technological distance between the research cluster and the firm and see how the effects 

will change.  Similar to Table 2, Column (1) runs the basic OLS regression.  Through 

Column (2) to (4), I add in firm fixed-effects, industry dummies and year dummies, one 

at a time.  The coefficient on the interactive term between technological distance and 

cumulative R&D spending at the research cluster turns out to be highly significant 

statistically and has the negative sign as expected.  The negative coefficient indicates the 

larger the technological distance between research cluster and the spillover receiving firm, 

the smaller the productivity gain for the firm.  As defined by equation (3) in Section 3.2, 

the technological distance variable measures the average labor productivity of the top 

R&D firms at the research cluster, and average labor productivity of all the firms located 

in the receiving city, n.  Both productivities are indexed at industry j and year t.  Since 

firms’ productivity in our definition captures certain idiosyncratic characteristics of the 

city where the firm is located, the negative coefficient may well capture the poorer 

quality of local institutions and business environment that makes it harder for firms in the 

city to absorb the benefits of technology spillover, resulting in less productivity gains.  
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[Insert Table 3 here] 

  

 In Table 4, I report regression results of equation (4) in section 3.3.1.  The results 

that use all firms in the center city as the source of R&D spillover are shown in Column 

(3) and (4).  For comparison purpose, results in Column (1) and (2) that uses the top 5 

firms as the source of technology are taken directly from Table 3.  The coefficients on 

both distance measures retain the same signs and remain statistically significant.  

 

[Insert Table 4 here] 

 

 Table 5 presents the regression results of equation (5).  What I try to find from 

this group of regression is whether the R&D concentration ratio at the center city matters 

for technology spillover.  As a reminder, R&D concentration ratio is measured by R&D 

spending by the top 5 firms at research center city c, over the total R&D spending of all 

firms in the same city; and the ratio is indexed at industry-year, jt.  As shown in the table, 

the coefficient of the interactive term between 5,ln( )
c
ndisttop c

jtCRD e   and concentration 

ratio is negative and statistically significant.  This seems to suggest that the higher the 

R&D concentration ratio the more slowly the productivity gains from R&D spillover will 

decline with increasing physical distance from the research cluster.  The coefficient of the 

interactive term between  5, 5,ln( ) _top c top c
jt njtCRD tech dist  and concentration ratio is positive 

and remains statistically significant most of the time (except in Column 4), and this 

suggests that giving the same technological distance between center and firm, the higher 
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the R&D concentration ratio in the center city, the more productivity gains firms will get 

from technology spillover.  In short, both results imply that higher R&D concentration 

ratio is good for technology spillover, everything being equal.  

 

[Insert Table 5 here] 

 

 Table 6 presents the regression results of equation (6), where I differentiate the 

source of technology spillover at the research cluster.  The estimation results are very 

similar to the previous results in Table 3: the coefficients on both domestic and foreign 

R&D, for both physical and technological distances, have the same sign and remain 

statistically significant.  For physical distance, the smaller coefficient on foreign R&D 

indicates that the impact on firm’s productivity from foreign R&D tends to decline more 

slowly than domestic R&D.   However, for technological distance, the effects from both 

R&D sources are very similar.  Note that when I add in year dummies in the last column, 

the coefficients on the physical distance for both R&D sources became not statistically 

significant, but their signs still remain positive.  But in general, the regression results are 

quite robust.  

 

[Insert Table 6 here] 
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4. 2   Endogeneity issue 

 One might argue that a firm’s location and distance to the research cluster are 

endogenously determined by the firm’s decision to locate or to move closer to the 

research cluster from a previous location so as to take advantage of the larger technology 

spillover.  This could be a potential problem if firms with higher productivity take 

advantage of spillover opportunities by moving closer to the cluster.  In this case, even 

when the productivity of these firms may not be affected by the technology spillover 

from the cluster as modeled in our estimation, we may still find a positive relationship 

between close proximity to the research cluster and higher productivity.   

 Of course, one might counter that some of these firms chose to move closer to the 

center simply because there exists a larger positive spillover effect with shorter distance 

to the research cluster, so their move simply reflects, if not reinforces, the causal 

relationship between the distance and higher productivity.   

 Still, we cannot exclude the possibility that some firms with pre-existing better 

technology locate/move closer to the center based on the factors other than distance. So 

how can we deal with this potential endogeneity problem?  One easy way out is to look at 

only those firms that established their businesses before the beginning year of our testing 

period, i.e., 1995.  So in the new test sample, I dropped all the firms that opened their 

businesses or changed locations after 1995.   Since a firm’s location and its distance are 

prefixed before the 1995-2004 period, this precludes any possibility of the endogeneity 

problem discussed above.  By my calculation, this new testing sample still incorporates 

over 80% of the total observations of the previous sample.   
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[Insert Table 7 here] 

 

 The regression results for this sub-group are presented in Table 7.  As shown, the 

coefficients on all our main variables still remain the same sign and they are statistically 

significant.   In fact, if one compares the magnitude of all the coefficients in the whole 

sample and the sub-group sample, they are also very similar.  This indicates that the 

endogeneity might not be a real concern in our empirical testing.   

 

4.3   Distance effect from research cluster vs. from the coastal line 

 The major research clusters identified in this paper are all located along China’s 

coastal line.  One might argue that the distance effect captured in our empirical test actual 

reflects the distance from the coastal line, rather than the distance from the research 

clusters.  To solve this potential identification problem, in this section, I include three 

additional cities from the interior region (other than from coastal line) as the source of 

R&D spillover, the purpose of which is to differentiate between the distance effect from 

research cluster and distance effect from the coastal line.  

 Among the top ten cities in our R&D expenditure ranking list, only Xi’an is 

located in the interior region.  Further down on the R&D spending list, Shenyang is 

ranked 14th, and Wuhan is ranked 17th, respectively.  I include these three inner cities.  

The regression results of equation (2) are reported in Table 8.  As shown in the table, the 

distance effect from the research clusters in our previous regressions still holds and the 

coefficients on the two distance variables remain statistically significant and their signs 

are unchanged.  This demonstrates that our estimation results are very robust. 
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 In Column (5) of Table 8, to look at how the coastal location will affect firm’s 

productivity gains from technology spillover, I further included a coastal dummy and let 

it interact with 5,ln( )
c
ndisttop c

jtCRD e   and 5, 5,ln( ) _top c top c
jt njtCRD tech dist .  The results are 

very interesting.  The first interactive term with physical distance turns out to be negative 

and statistically significant.  It suggests that firms located in the coastal region tend to 

have a smaller “negative” distance effect with increasing physical distance between firm 

location and research clusters.  The second interactive terms turns out to be positive and 

statistically significant, and it suggests that given the same technological distance 

between firms and research clusters, coastal firms tend to enjoy much larger productivity 

gains from technology spillover than firms in the interior region.   

 

5.   Conclusion and Remarks 

 Through a series of robust empirical tests, I confirm that distance does matter in 

technology spillovers.  First, physical distance matters and technology spillovers are 

largely local ---Firms’ productivity gains decline as the geographic distance between the 

firm and the research cluster increases.  Second, technological distance also matters ---

The larger the productivity gap between the research clusters and firms, the smaller the 

productivity gains from the technology spillover.  The most obvious implication from this 

research is with the presence of “distance effects”, technology diffusion in reality has 

many frictions and income inequality tends to persist.  It’s still too early to proclaim the 

“death of distance”.  

 The estimation results in our extended models suggest that higher R&D 

concentration ratio in research clusters and exposure to foreign R&D activities both have 
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larger positive spillover effects on firms’ productivity gains.  Given that most of China’s 

research clusters are highly concentrated and its high degree of openness to foreign direct 

investment, China seems to be well positioned to absorb the benefits of technology 

diffusion.  

 The results from this empirical study also have important implications for policy 

makers in urban planning and regional development alike.  One such implication is that 

in order to receive greater benefits from technology spillovers, firms with better 

technologies may cluster together as close as possible to the research cluster, where most 

R&D activities take place.   But over time this tends to result in over-crowdedness in 

cluster cities.  The high concentration of the most productive firms also has implications 

on income equality.  In China’s case, since all big research clusters are located along the 

coastal line, the “distance effect” on technology spillover tends to magnify the already 

highly skewed income distribution between the urban and rural area, as well as the gap 

between the coastal and interior regions.11  The policy alternative should aim to establish 

multiple research clusters across different regions, not just along the coastal area.  This 

will help technology spillovers to expand its scope without requiring firms to change 

their current locations.  

 Another important policy implication from this study is: firms with more 

backward technology may not receive the same great benefits as those firms with similar 

technologies with the cluster.  So in order for technology spillover to be more effective, 

policy makers should not rush into building more “technology parks”, but should instead 

focus on how to improve the quality of local institutions.   

                                                 
11 According to National Statistics Bureau of China, in 2006, the urban-rural income ratio is 3.3:1.  
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Figure 1  

Top 10 Cities with the Largest R&D Spending 
(in billion Yuan, Cumulative 1995-2004)
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Figure 2 

 Top 10 Cities' R&D Spending as % of National Total
(Cumulative 1995-2004)
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Figure 3 

R&D Spending Concentration ratio within city (top n firms)
Beijing, 2000-2004 average
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R&D Spending Concentration Ratio within City (top n firms)
Shenzhen, 2000-2004 average
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R&D Spending Concentration Ratio within City (top n firms)
Qingdao, 2000-2004 average
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Figure 4 

Beijing R&D Expenditure by 2-digit Industry
2000-2004
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Shenzhen R&D Expenditure by 2-digit Industry
2000-2004
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Qingdao R&D Expenditure by 2-digit Industry
2000-2004
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Figure 5 

Top 10 2-digit industry's share of total R&D spending
2000-2004 average
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SIC     
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Industry Name 

R&D 
Expenditure, in 
million Yuan (5-
year average) 

% of total 

40 telecom and electronics 9563.6 25.6% 
37 transportation equipment 5205.7 13.9% 
39 electric machinery 3882.7 10.4% 
32 ferrous metal 2958.0 7.9% 
26 chemicals 2542.8 6.8% 
35 general equipment 2102.4 5.6% 
36 special equipment 1464.9 3.9% 
27 pharmaceutical 1437.0 3.8% 
17 textile 911.0 2.4% 
31 non-metal minerals manufacturing 779.6 2.1% 
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Figure 6 

2-digit industry share of total R&D spening  among firms with 
over 100 milion yuan annual R&D expenditure, 2004 
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Figure 7   Exponential function on distance, xe , ( )x dist  
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Table 1.   Descriptive statistics 
    Mean Std. dev Min Max Obs

Dependent variable:             

Log of labor productivity at firm-level 
(ijt)   3.25 1.31 -7.27 10.18 134540 

   Labor productivity at firm-level (ijt)   61.21 214.91 0.00 26253 135141 

Independent variables:             

Log of capital intensity, firm level (ijt)   4.01 1.07 -8.07 11.82 135141 

   Capital intensity, firm level (ijt)   114.20 739.06 0.00 136,341 135141 

Log of cumulative R&D of top 5 firms 
at research cluster, by industry-year 
(njt)   10.47 2.29 0.69 16.80 124231 

    Cumulative R&D of top 5 firms at 
research cluster, by industry-year (njt)   312,833 1,285,573 0.00 19,800,000 135141 

Geographic distance to the nearest 
research cluster (n) 

  0.383 0.383 0.000 3.427 135141 

Technological distance between firm 
and the average of the top 5 firms in 
the nearest research cluster (njt) 

  0.63 1.07 -4.27 8.95 135087 

Notes:              

* The unit of measurement for labor productivity and capital labor ratio 1,000 Yuan per employee-year.   
* R&D numbers are all in thousands of 
Yuan.             

* Geographic (physical) distances are in 1000 kilometers.          

* (njt) means the variable is indexed by city n, industry j and year t.        

*Technological distance is defined in equation (3).         
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Table 2.  The Impact of R&D Spillovers on Firm's Productivity: Physical Distance 
           
   Dependent variable: 

   
ln(VA/L)ijt, Log of labor productivity at firm 

level 

Independent variables:  (1) (2) (3) (4) 

ln(K/L)ijt,  log of capital intensity  0.572*** 0.245*** 0.245*** 0.225*** 

   (0.003) (0.004) (0.004) (0.005) 

ln(CRD)*exp(-dist), log of cumulative R&D 
of the top5 firms at research cluster 
interacting w/ physical distance between 
cluster 'n firm 

 

0.076*** 0.103*** 0.104*** 0.003 

   (0.001) (0.003) (0.003) (0.004) 

constant  0.375*** 1.481*** 1.619*** 2.248*** 

   (0.015) (0.024) (0.086) (0.087) 

firm fixed effects  No Yes Yes Yes 

industry dummies  No No Yes Yes 

year dummies  No No No Yes 

obs  123,659 123,659 123,659 123,659 

adj. (or overall) R-sq.  0.254 0.203 0.212 0.292 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.     
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Table 2b.  The Impact of R&D Spillovers on Firm's Productivity: Physical distance in different ranges 
                    
    Dependent variable: 

    ln(VA/L)ijt, Log of labor productivity at firm level 

Independent variables:   (1) (2) (3) (4) (5) (6) (7) (8) 

distance range   no limit <500km <400km <300km <200km <100km 100-200km 100-300km 

ln(K/L)ijt,  log of capital intensity 0.225*** 0.218*** 0.221*** 0.218*** 0.218*** 0.193*** 0.232*** 0.225*** 

    (0.005) (0.006) (0.006) (0.006) (0.007) (0.011) (0.009) (0.007) 

  

0.003 0.007 0.006 0.009** 0.013*** -0.002 0.023*** 0.016*** 

ln(CRD)*exp(-dist), log of 
cumulative R&D of the top5 firms 
at research cluster interacting w/ 
physical distance between cluster 
'n firm   (0.004) (0.005) (0.005) (0.005) (0.006) (0.009) (0.007) (0.006) 

constant   2.248*** 2.317*** 2.371*** 2.311*** 2.451*** 2.297*** 2.425*** 2.270*** 

    (0.087) (0.099) (0.102) (0.110) (0.135) (0.307) (0.154) (0.118) 

firm fixed effects   Yes Yes Yes Yes Yes Yes Yes Yes 

industry dummies   Yes Yes Yes Yes Yes Yes Yes Yes 

year dummies   Yes Yes Yes Yes Yes Yes Yes Yes 

obs   123,659 88,270 80,062 70,259 54,531 23,782 30,749 46,477 

adj. (or overall) R-sq.   0.292 0.290 0.288 0.284 0.281 0.200 0.273 0.284 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.           
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Table 3.  The Impact of R&D Spillovers on Firm's Productivity:  Physical & 
Technological Distance 
            
    Dependent variable: 

    
ln(VA/L)ijt, Log of labor productivity at firm 

level 

Independent variables:   (1) (2) (3) (4) 

ln(K/L)ijt,  log of capital intensity   0.551*** 0.241*** 0.241*** 0.217*** 

    (0.003) (0.004) (0.004) (0.004) 

ln(CRD)*exp(-dist), log of cumulative 
R&D of the top5 firms at research cluster 
interacting w/ physical distance between 
cluster 'n firm 

  

0.077*** 0.133*** 0.133*** 0.025*** 

    (0.001) (0.003) (0.003) (0.004) 

ln(CRD)*techdist, log of cumulative R&D 
of the top5 firms at research cluster 
interacting w/ tech. distance between 
cluster 'n firm  

  

-0.022*** -0.019*** -0.019*** -0.019*** 

    (0.000) (0.000) (0.000) (0.000) 

constant   0.601*** 1.394*** 1.544*** 2.211*** 

    (0.015) (0.023) (0.085) (0.086) 

firm fixed effects   No Yes Yes Yes 

industry dummies   No No Yes Yes 

year dummies   No No No Yes 

obs   123,659 123,659 123,659 123,659 

adj. (or overall) R-sq.   0.287 0.217 0.234 0.354 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.     
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Table 4.  The Impact of R&D Spillovers on Firm's Productivity:  all firms vs. top 5 firms 
as source of R&D spillover at research cluster 
            
    Dependent variable: 

    
ln(VA/L)ijt, Log of labor productivity at firm 

level 

Independent variables:   (1) (2) (3) (4) 

    top 5 firms all firms 

ln(K/L)ijt,  log of capital intensity 0.241*** 0.217*** 0.243*** 0.214*** 

    (0.004) (0.004) (0.004) (0.005) 

ln(CRD)*exp(-dist), log of cumulative 
R&D at research cluster interacting w/ 
physical distance between cluster 'n 
firm 

  

0.133*** 0.025*** 0.148*** 0.026*** 

    (0.003) (0.004) (0.003) (0.005) 

ln(CRD)*techdist, log of cumulative 
R&D at research cluster interacting w/ 
tech. distance between cluster 'n firm  

  

-0.019*** -0.019*** -0.027*** -0.027*** 

    (0.000) (0.000) (0.000) (0.000) 

constant   1.544*** 2.211*** 1.653*** 2.324*** 

    (0.085) (0.086) (0.087) (0.088) 

firm fixed effects   Yes Yes Yes Yes 

industry dummies   Yes Yes Yes Yes 

year dummies   No Yes No Yes 

obs   123,659 123,659 110,599 110,599 

adj. (or overall) R-sq.   0.234 0.354 0.252 0.369 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.     
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Table 5.  The Impact of R&D Spillovers on Firm's Productivity:  Does R&D 
concentration matter? 
            
    Dependent variable: 

    
ln(VA/L)ijt, Log of labor productivity at firm 

level 

Independent variables:   (1) (2) (3) (4) 

ln(K/L)ijt,  log of capital intensity   0.547*** 0.525*** 0.255*** 0.229*** 

    (0.004) (0.004) (0.005) (0.005) 

ln(CRD)*exp(-dist), log of 
cumulative R&D of the top5 firms at 
research cluster interacting w/ 
physical distance between cluster 'n 
firm 

  

0.134*** 0.146*** 0.186*** 0.044*** 

    (0.002) (0.002) (0.006) (0.008) 

ln(CRD)*exp(-dist) interacting with 
R&D concentration ratio* of the top 
5 firms  

  

-0.091*** -0.099*** -0.021*** -0.011*** 

    (0.002) (0.002) (0.001) (0.004) 

ln(CRD)*techdist, log of cumulative 
R&D of the top5 firms at research 
cluster interacting w/ tech. distance 
between cluster 'n firm  

  

  -0.028*** -0.021*** -0.019*** 

      (0.001) (0.001) (0.001) 

ln(CRD)*techdist interacting with 
R&D contration ratio of the top 5 
firms  

  

  0.011*** 0.004*** 0.002 

      (0.001) (0.001) (0.001) 

constant   0.492*** 0.683*** 1.016*** 2.035*** 

    (0.019) (0.018) (0.034) (0.172) 

firm fixed effects   No No Yes Yes 

industry dummies   No No No Yes 

year dummies   No No No Yes 

obs   82,932 82,932 82,932 82,932 

adj. (or overall) R-sq.   0.256 0.289 0.176 0.358 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.   
*R&D contration ratio is measured by R&D of top 5 firms over total R&D expenditure of all firms of cluster 
city, 

 indexed by industry-year.            
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Table 6.  Differentiating Source of R&D Spillovers: Domestic vs. Foreign    
           
   Dependent variable: 

   ln(VA/L)ijt, Log of labor productivity at firm level 

Independent variables:  (1) (2) (3) (4) 

ln(K/L)ijt,  log of capital intensity 0.474*** 0.238*** 0.237*** 0.219*** 

   (0.004) (0.006) (0.006) (0.006) 

ln(CRD)*exp(-dist), log of domestic 
cumulative R&D at research cluster 
interacting w/ physical distance 
between cluster 'n firm 

 

-0.033*** 0.086*** 0.085*** 0.009 

   (0.002) (0.005) (0.005) (0.006) 

ln(CRD)*exp(-dist), log of foreign* 
cumulative R&D at research cluster 
interacting w/ physical distance 
between cluster 'n firm 

 

0.118*** 0.052*** 0.051*** 0.006 

   (0.002) (0.004) (0.004) (0.004) 

ln(CRD)*techdist, log of domestic 
cumulative R&D at research cluster 
interacting w/ tech. distance 
between cluster 'n firm  

 

-0.009*** -0.018*** -0.018*** -0.019*** 

   (0.000) (0.000) (0.000) (0.000) 

ln(CRD)*techdist, log of foreign 
cumulative R&D at research cluster 
interacting w/ tech. distance 
between cluster 'n firm  

 

-0.036*** -0.017*** -0.017*** -0.014*** 

   (0.000) (0.001) (1.001) (0.000) 

constant  1.218*** 1.560*** 1.768*** 2.407*** 

   (0.021) (0.034) (0.128) (0.129) 

firm fixed effects  No Yes Yes Yes 

industry dummies  No No Yes Yes 

year dummies  No No No Yes 

obs  66,441 66,441 66,441 66,441 

adj. (or overall) R-sq.  0.342 0.276 0.285 0.379 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.     
*foreign R&D includes R&D expenditure of both pure foreign firms and foreign-domestic joint ventures.  
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Table 7.  Deal with potential endogeneity problem: estimation using only those firms that opened their businesses BEFORE 
1995, the beginning year of the data 
                      
    Dependent variable: 

    ln(VA/L)ijt, Log of labor productivity at firm level 

Independent variables:   (1) (2) (3) (4)   (5) (6) (7) (8) 

    firms that existed before 1995 vs. all firms 

ln(K/L)ijt,  log of capital intensity   0.559*** 0.250*** 0.250*** 0.224***   0.551*** 0.241*** 0.241*** 0.217*** 

    (0.004) (0.005) (0.005) (0.005)   (0.003) (0.004) (0.004) (0.004) 

  

0.073*** 0.125*** 0.124*** 0.018***   0.077*** 0.133*** 0.133*** 0.025*** 

ln(CRD)*exp(-dist), log of cumulative 
R&D of the top5 firms at research 
cluster interacting w/ physical 
distance between cluster 'n firm   (0.001) (0.003) (0.003) (0.005)   (0.001) (0.003) (0.003) (0.004) 

  

-0.022*** -0.019*** -0.019*** -0.019***   -0.022*** -0.019*** -0.019*** -0.019*** 

ln(CRD)*techdist, log of cumulative 
R&D of the top5 firms at research 
cluster interacting w/ tech. distance 
between cluster 'n firm    (0.000) (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000) 

constant   0.514*** 1.321*** 1.457*** 2.118***   0.601*** 1.394*** 1.544*** 2.211*** 

    (0.017) (0.025) (0.093) (0.094)   (0.015) (0.023) (0.085) (0.086) 

firm fixed effects   No Yes Yes Yes   No Yes Yes Yes 

industry dummies   No No No Yes   No No Yes Yes 

year dummies   No No No Yes   No No No Yes 

obs   102,632 102,632 102,632 102,632   123,659 123,659 123,659 123,659 

adj. (or overall) R-sq.   0.272 0.210 0.221 0.311   0.287 0.217 0.234 0.354 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.             
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Table 8.  Identifying Distance Effect from the R&D at the Research Clusters: with research 
clusters from the interior region  
              

    Dependent variable: 

    ln(VA/L)ijt, Log of labor productivity at firm level 

Independent variables:   (1) (2) (3) (4) (5) 

ln(K/L)ijt,  log of capital intensity   0.570*** 0.238*** 0.235*** 0.212*** 0.212*** 

    (0.003) (0.005) (0.005) (0.005) (0.005) 

ln(CRD)*exp(-dist), log of cumulative 
R&D of the top5 firms at research cluster 
interacting w/ physical distance between 
cluster 'n firm 

  

0.073*** 0.100*** 0.130*** 0.029*** 0.051*** 

    (0.001) (0.003) (0.003) (0.004) (0.006) 

ln(CRD)*techdist, log of cumulative R&D 
of the top5 firms at research cluster 
interacting w/ tech. distance between 
cluster 'n firm  

  

    -0.019*** -0.019*** -0.026*** 

        (0.000) (0.000) (0.001) 

              

ln(CRD)*exp(-dist) interacting w/ coastal 
dummy           -0.037*** 

            (0.005) 

ln(CRD)*techdist interacting w/ coastal 
dummy           0.013*** 

            (0.001) 

constant   0.358*** 1.463*** 1.328*** 2.249*** 2.259*** 

    (0.018) (0.025) (0.024) (0.092) (0.092) 

firm fixed effects   No Yes Yes Yes Yes 

industry dummies   No No No Yes Yes 

year dummies   No No No Yes Yes 

obs   102,436 102,436 102,436 102,436 102,436 

adj. (or overall) R-sq.   0.232 0.185 0.210 0.329 0.263 

Notes: *** (**, * ) indicates statistical significance at the 1 (5, 10)-percent level.     
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Appendix 

 
Geographic Locations of China’s Key Research Clusters 

 

 


